Umbraco Contour1.

Developer Documentation

Per Ploug Hansen
8/3/2010

Contains information for developers working with and extending Umbraco Contour

Table of Contents

T e e [¥ Tt o] o FO PP PP PRV SR 4
=Y T (o] I o 11 (o] o T T T T U 4
(00T a1 (o VT Y I I 1T =1 V2R 5
RECOID XM FOMMAT. . .eiiiie ittt ettt et e e s bt e s bt e e sabeesabeesabeeesmeeesabeesaseeeaneeesnreesanes 5
SAMPIE XPath Stat@MENTS.....ueiiiieee e e e e e e s st r e e e e e e e e e snteaeeeeeesanstraeeeaaaaann 6
Get all records from the CUTENT PAgE.....cii i e e e e s e e e e eabae e e enreas 6

To select all fields 0N @ FECOTTc...iiiiiiee e ettt s eaeesane e 6

To Select a field with @ SPeCific CAPLION......cii i e e e 6
CONtOUN Provider IMOGEL......c..eieie ettt et ettt e s bt e s bt e e bt e e sabeesabeeesnneesareesareesnen s 7
1] o B N =S ERURN 7
(DL BT o 10 ol T N/ oY 7
Y Y U TR o 1N oI 1Y/ o 1TSS UP 7
LAV S Lo L Y AV oY= PSP 7
g o T] a1/ o 1= E 3PP PPPPPPTPPPTPPPRt 7
Adding a type to the Provider MOElooi e e e e e e ae e e e e s e raraeeeeaeeeas 8
=T 0 T T =1 [0 o 3 8
Fi¥o o oY= o o [=I A7 o= o J €] o1 o LU oSS 8
Setting Up basic type iINTOrMAtIONcc.uviiiiiee e e e e e e sta e e e s rbte e e e sbaeeeenes 8
Vo o o T Y Y wu] oY ={ 3R o I TN 2/ o 1T U 9
Validating type settings with Validat@Settings()c.veeeeeuiieieiiii ettt et e e et e e aaee e 9
Registering the class with Umbraco and CoNtOUFcoeiiiiciiiiie e 9
Adding a field type to Umbraco CONTOUNcccociieieee ettt et e e e e e e e b e e e e e e s e e nnraaeeeaaeean 10
Fi¥o o oYY oY =d R o I 111 Lo IR A/ o 1= ST 11
Adding a workflow type to Umbraco CONTOUNuiiiiiiiiie ettt e e e e eate e e e e sba e e e eentae e e snaeeeeenes 12
Record and RECOIASEt @CtIONS.....c..iiiiiiieiie ettt sttt ettt e b e sb e sae e s e e 13
Y=Y] o] TSR R =ToloT e 1 Yoru o o NP SRS 13
Setting UP the @CHiON tY P8 e e e e e e ee e e e e e et are e e e e e eessansraaeeeaeesnnnens 13
YT 0] o] TR A=Y oloT e £y = =Tt [o OSSR 14
Adding form temMPlates 10 CONTOUN ...ccciiiii et e et e e eete e e e s e eate e e e ebeeeesentaeeessraeeesnseneenanes 16
Adding an existing form as @ tEMPIAte.......ccccviiii i e e e 16
(SE] ol [TaY-a [o Vg Tol=Yo M1V FoTo o I o] o] o T=T o 4= 17

YN]] o LAY, o Yol o B o o] o T o [T ST 17

S (=T =T (ol T PP P SR RUPPTUPPTOTPPRPON 18
Umbraco Contour LIbrary Methods.ttt et e e bae e e aae e e e srae e e enees 18
GetAppProvedRECOrdSFIrOMPAEEuiiiiiie et e e e e e e e e e et a e e s sae e e e e s eaanaraeeeeeeeeenssnaees 18
GetApprovedRecordsFromFOrMONPAEE ittt e e e e e e e e e eanbre e e e e e e e e ararees 18
Gy d Tl T o K] o fo 1] o= -SSR 18
GetRecordsFroMFOIrMONPAGE.coiiciiei et re e e et e e e e bte e e e eaba e e e e nbaeeesareeeeenrees 18
GETRECOINASFIOMEOIM ..ttt ettt et e b e b e b e sheesaeesaeesaeesmeeemeeeneeenneenneeas 18
(CT=Y o 2 {CTolo] o F PP PSRRI 18
Bracket syntax for WOrkflow SEtHINGSeuviiiiieeie e e e e rr e e e e e e e anees 19
YooY ge IV Y (0TI} o} - D RN 19
Page, Session and COOKIe VAIUBS SYNTAX ..ccccuuiieiiiiiiieiiiiie e ccitee et et e et e et re e e e abee e e srbae e e sabeeeeeares 20
Bl oL o)V Te 1Tl Vo Yo =Y ISP 21
Inheritable classes for the provider MOdEelooo i 21

R =Y =0 N/ o 1S 24
AVailable field SETEING tYPES ... e e e e e e e e e e naba e e e e e e e e enrraaeeeaeeenannnes 24
THE RECOTASEIVICE ...ttt ettt ettt s e st e s bt e sab e e st e e s bt e e sabeesabeesabeeesnseesabeesaneeeneeesnreesneeenns 25
Record-State changing MEthOdSuuei i e ee e e e e e e e e 25
AVaIlable RECOIA EVENTS ..ottt sttt ettt et e sb e b e e s e e 25
Subscribing to record events using umbraco.buinesslogic.ApplicationBaseccccocvveeevivieeeeeecieeeens 26
The RecordStorage and RECOIASVIBWETuuiiiiiiiiiciiiieeee ettt e e e ee et ee e e e e e e e et baree e e e s e e esnnrsaaeeeasssnnnns 26
Instantiating the reCord StOrAGE.......uuiii it e e e e e e e a e e e e e e eeesnreeeeeaaeean 26
Import / Export / FOrm Template@s XIMIL SCREM@uecevieeieeeeeee ettt et ettt e et e eeteeeeteeeaeeenane s 27

Introduction

These developer documents covers working with Umbraco Contour from a developer standpoint. It covers
retrieving data from contour, either via XSLT or via the normal API, it shows how to extend the system by
hooking into the provider model, and finally it describes the available events and workflows you can use to

extend or integrate Contour.

This document is divided into 2 main parts. The first part consists of small walkthroughs to perform
common tasks. The second part is the reference chapter, which covers the different elements in more
detail and shows the more advanced options.

Revision History

e Version 1.1, August, 2010, Author: Per Ploug Hansen
o Added information on the new 1.1 features
o RecordAction
o RecordSetAction
o Import/ export / template xml schema

e Version 1.0.1 November 20th 2009, author: Per Ploug Hansen
o Added information on the workflow bracket syntax

e Version 1.0 November 13th 2009, author: Per Ploug Hansen

Contour XSLT Library

Umbraco Contour includes an XSLT Extension library which is accessible through the XSLT Editor in the
developer section.

Record Xml Format
The Library contains a number of methods which returns records as XML in the below format

<?xml version="1.0" encoding="utf-8"?>
<uformrecords>
<uformrecord>

<state>Approved</state>
<created>2009-11-13T10:01:55</created>
<updated>2009-11-13T10:01:55</updated>
<id>119ecc43-df79-46e1-9020-b2e27e239175</id>
<ip>127.0.0.1</ip>
<pageid>0</pageid>
<memberkey></memberkey>
<fields>

<name record="119ecc43-df79-46e1-9020-b2e27e239175" sortorder="0">
<key>2295187e-0345-4260-a406-eabccle774e2</key>
<fieldKey>e6157c93-0b54-4415-b7ba-5c7¢c2c953b70</fieldKey>
<caption>Name</caption>
<datatype>String</datatype>
<values>

<value><![CDATA[My Name]]></value>

</values>

</name>

<email record="119ecc43-df79-46e1-9020-b2e27e239175" sortorder="1">
<key>a92875a8-938d-4bab-990a-59a3518ce62c</key>
<fieldKey>d8bl@ffb-c437-4a44-8df6-01lebaf5ac26f</fieldKey>
<caption>Email</caption>
<datatype>String</datatype>
<values>

<value><![CDATA[pph@testdomain.com]]></value>

</values>

</email>

</fields>
</uformrecord>
</uformrecords>

All record nodes are contained in a <uformrecords> element. All records consist of a <uformrecord>
element with some meta data on it. The <uformrecord> contains a field element which contains a
collection of nodes reflecting the form data fields.

The naming of the child elements inside the <fields> element are named accordingly to the caption of the
field converted to lower case and with all foreign characters removed.

The element contains a <values> element which contains all entered values in individual <value>
elements. A field can have multiple values, a checkboxlist for instance can save multiple values.

Sample XPath statements

These samples are provided as an introduction to working with Contour xml data. It does however follow
the XPath standard and the above xml format can work with any valid XPath. The below snippets needs the
standard umbraco xslt file to work, so simply create a new xslt file and insert the snippets on that file.

Get all records from the current page

<xsl:for-each select="umbraco.contour:GetRecordsFromPage($currentPage/@id)//uformrecord">
<xsl:sort select="created" order="ascending"/>
<1li>
A record with the state set to <xsl:value-of select="state"/>
was created on <xsl:value-of select="umbraco.library:LongDate(created)"/>
</1i>
</xsl:for-each>

To select all fields on a record

<xsl:for-each select="umbraco.contour:GetRecord($id)/uformrecord/fields/child::*">
<xsl:sort select="caption" order="ascending"/>
<h4>
<xsl:value-of select=" caption"/>
</h4>
</xsl:for-each>

To Select a field with a specific caption
<xsl:variable name="record" select="umbraco.contour:GetRecord ($id)"/>

<xsl:variable name="email" select="$record/uformrecord/fields/child::* [caption = 'Email']"/>
or

<xsl:variable name="email" select="$record/uformrecord/fields/email"/>

Contour Provider Model

Most parts of Umbraco Contour uses a provider model, which makes it easy to add new parts to the
application.

The model uses the notion that everything must have type to exist. The type defines the capabilities of the
item. For instance a Textfield on a form has a FieldType, this particular field type enables it to render an
input field and save simple text strings. The same goes for workflows, which has a workflow type,
datasources which have datasource type and so on. Using the model you can seamlessly add new types and
thereby extend the application.

In the current version it is possible to add new Field types, Data Source Types, Prevalue Source Types,
Export Types, and Workflow Types.

Field Types

A field type handles rendering of the Ul for a field in a form. It renders a standard asp.net webcontrol and is
able to return a list of values when the form is saved.

Data Source Types

A data source type enables Contour to connect to a custom source of data. A datasource can consist of any
kind of storage as long as it possible to return a list of fields Contour can map values to. For exemple: a
Database data source can return a list of columns Contour can send data to, which enables Contour to map
a form to a data source. A data source type is responsible for connecting to the storage, retrieving available
fields and sending a record to the data source and then saving it.

Prevalue Source types

A prevalue source type can connect to a 3rd party storage and retrieve a collection of values which can be
used on fields which support prevalues. The prevalue source is responsible for connecting to the source and
retrieving the collection of values. A prevalue sourc e type can also implement edit capabilities so new
items can be added/updated/deleted directly from the form editor.

Workflow types
A workflow can be executed each time a form changes state (when it is submitted for instance). A workflow
is responsible for executing simple logic which can modify the record or notify 3rd party systems.

Export Types

Export types are responsible for turning form records (which are xml) into any other data format, which is
then returned as a file.

Adding a type to the provider model

To add a new type, no matter if it's a workflow, field, data source, etc, there is a number of tasks to
perform to connect to the Contour provider model. This chapter walks through each step and describes
how each part works. This chapter will reference the creation of a workflow type. It is however the same
process for all types.

Preparations
Create a new asp.net or class project in Visual Studio 2005/2008 add references to the
Umbraco.Forms.Core.dll.

Adding the type to Contour

The Contour api contains a collection of classes that the provider model automaticly registers. So to add a
new type to Contour you simply inherit from the right class. In the sample below we use the class for the
workflow type.

public class Classl : Umbraco.Forms.Core.WorkflowType

{
public override WorkflowExecutionStatus Execute(Umbraco.Forms.Core.Record record)
{
throw new NotImplementedException();
}
public override List<Exception> ValidateSettings()
{
throw new NotImplementedException();
}
}

When you implement this class you get two methods added. One of them is Execute which performs the
execution of the workflow and the other is a method which validates the workflow settings, we will get
back to these settings later on.

Even though we have the class inheritance in place, we still need to add a bit of default information.

Setting up basic type information

Even though we have the class inheritance in place, we still need to add a bit of default information. This
information is added in the class's empty constructor like this:

public Classi() {
this.Name = "The logging workflow";
this.Id = new Guid("D6A2C406-CF89-11DE-BO75-55B055D89593");
this.Description = "This will save an entry to the log";

All three are mandatory and the ID must be unique, otherwise the type might conflict with an existing one.

Adding settings to a type
Now that we have a basic class setup, we would like to pass setting items to the type. So we can reuse the
type on multiple items but with different settings. To add a setting to a type, we simply add a property to
the class, and give it a specific attribute like this:
[Umbraco.Forms.Core.Attributes.Setting("Log Header",
description = "Log item header",

control = "Umbraco.Forms.Core.FieldSetting.TextField")]
public string LogHeader { get; set; }

The Umbraco.Forms.Core.Attributes.Setting registers the property in Umbraco Contour and there will
automatically be Ul and storage generated for it. In the attribute a name, description and the control to be

rendered is defined.

With the attribute in place, the property value is set every time the class is instantiated by Umbraco
Contour. This means you can use the property in your code like this:
[Umbraco.Forms.Core.Attributes.Setting("Document ID",
description = "Node the log entry belongs to",

control = "Umbraco.Forms.Core.FieldSetting.Pickers.Content")]
public string document { get; set; }

public override Enums.WorkflowExecutionStatus Execute(Record record)

{
Log.Add(LogTypes.Debug, int.Parse(document), "record submitted from: " + record.IP);

}

For all types that uses the provider model, settings work this way. By adding the Setting attribute Contour
automatically registers the property in the Ul and sets the value when the class is instantiated.

Validating type settings with ValidateSettings()
The validateSettings() method which can be found on all types supporting dynamic settings, is used for
making sure the data entered by the user is valid and works with the type.

public override List<Exception> ValidateSettings()

{
List<Exception> exceptions = new List<Exception>();
int docId = 0;
if (!int.TryParse(document, out docId))
exceptions.Add(new Exception("Document is not a valid integer"));
return exceptions;
}

Registering the class with Umbraco and Contour
Finally compile the project and copy the .dll to your website /bin folder or copy the .cs file to the app_code
directory. The website will now restart and your type will be registered automatically, no configuration

needed. Also look in the reference chapter for complete class implementations of workflows, fields and
export types

Adding a field type to Umbraco Contour
This builds on the "adding a type to the provider model" chapter

Add a new class to the visual studio solution and make it inherit from Umbraco.Forms.Core.FieldType
and override the Editor property.

In the empty constructor add the following information:

public Textfield() {
//Provider
this.Id = new Guid("D6A2C406-CF89-11DE-B075-55B055D89593 ");
this.Name = "Textfield";
this.Description = "Renders a html input fieldKey";

//FieldType

this.Icon = "textfield.png";
this.DataType = FieldDataType.String;

In the constructor we specify the standard provider information (remember to set the ID to a unique ID)

And then we set the field type specific information. In this case a preview Icon for the form builder Ul and
what kind of data it will return, this can either be string, longstring,integer,datetime or boolean.

Then we will start building the editor and the values it returns

public System.Web.UI.WebControls.TextBox tb;
public List<Object> _value;

public override WebControl Editor

{
get
{
tb.TextMode = System.Web.UI.WebControls.TextBoxMode.SinglelLine;
tb.CssClass = "text";
if (_value.Count > 9)
tb.Text = _value[@].ToString();
return tb;
}
set
{
base.Editor = value;
}
}

The editor simply takes care of generating the Ul control and setting its value. The List<object> is what is
later returned by the field type.

10

The reference chapter contains the full class implementation

Adding settings to field types

New in Contour 1.1, is the option to add settings to a field type, please follow the chapter on adding
settings to types to see sample code on setting types

11

Adding a workflow type to Umbraco Contour

This builds on the "adding a type to the provider model" chapter.

Add a new class to your project and have it inherit from Umbraco.Forms.Core.WorkflowType, implement
the class. For this sample we will focus on the execute method. This method process the current record
(the data submitted by the form) and have the ability to change data and state.

public override WorkflowExecutionStatus Execute(Record record, RecordEventArgs e)

{
//first we log it

Log.Add(LogTypes.Debug, -1, "the IP " + record.IP + " has submitted a record");

//we can then iterate through the fields

foreach(RecordField rf in record.RecordFields.Values){
//and we can then do something with the collection of values on each field
List<object> vals = rf.Values;

//or just get it as a string
rf.ValuesAsString();
¥

//If we altered a field, we can save it using the record storage
Umbraco.Forms.Data.Storage.RecordStorage store = new RecordStorage();
store.UpdateRecord(record, e.Form);

store.Dispose();

//we then invoke the recordservice which handles all record states

//and make the service delete the record.
Umbraco.Forms.Core.Services.RecordService rs = new RecordService(record);
rs.Delete();

rs.Dispose();

return WorkflowExecutionStatus.Completed;}

The Execute() method gets a Record and a RecordEventArgs argument. These 2 arguments contains all
information related to the workflow. The record contains all data and meta data submitted by the form.
The RecordEventArgs contains references to what form the record is from, what state itisinand a
reference to the current HttpContext

The sample above uses 2 different areas to work with the record. The first is the RecordStorage class
which handles all storage of the record data. The second is the RecordService, this handles record state
changes and record events. Both the RecordService and RecordStorage is described in detail in the
reference chapter.

The reference chapter contains the full class implementation

12

Record and Recordset actions

This functionality is only available in Contour 1.1 and above

A "Record action" is a utillity method you can execute in the context of a record after it has been
submitted and stored. This means you can add additional options for processing a Record or a Collection of
records (a Recordset)

This functionaly uses the same plugin model as the rest of Contour, so it is truly easy to extend the entries
viewer Ul with your own tools.

Sample Record Action
For this quick intro, we will setup a simple action that will convert the Record to XML and then set it to an
email address. This is done from the entries viewer in contour.

Setting up the action type
Like everything else in Contour, all logic is defined in a type. To get more in-depth information on types,
please read the chapter "adding a type to the provider model"

public class SendToEmail : RecordActionType

{
public SendToEmail()
{
this.Description = "Sends the record data to an email addresse of your choice";
this.Icon = "edit.png";
this.Id = new Guid("cdb3fa20-9e2f-11df-981c-0800200c9266");
this.Name = "Email record";
}

public override Enums.RecordActionStatus Execute(Record record, Form form)
{
string Email = "my@email.com";
string recordXML = record.ToXml(new System.Xml.XmlDocument()).OuterXml;
string sender = umbraco.UmbracoSettings.NotificationEmailSender;

umbraco.library.SendMail(sender, Email, "Contour Record", recordXML, false);
return Enums.RecordActionStatus.Completed;

—

This adds a new item to the record context menu on the entries viewer like so:

description Email
f-—
s Approve asdasd
9 g Delete
f Edit values
To f Email record gted [p PagelD Url description Email pame

13

When the item is clicked, the Execute()method is run with the record and form as parameters.

If you wish, you can also add settings to these types, making them more flexible and reusable, adding a
setting type like this to the class:

[Attributes.Setting("Email", description = "What email would you like to send the record to",
control = "Umbraco.Forms.Core.FieldSetting.TextField")]
public string Email { get; set; }

Will open a dialog like this instead of just executing the code right away:

Email name

asdasd asdasd

]
1A
|,

Q
E

|=1]
=
]
[= 9

Description Sends the record data to an email addresse of your choice
Email
What email would

you bike to send the
record to

Execute| or Cancel

The public property "Email" can then be used in the execute() method as Contour will load these
properties before executing.

Sample Recordset action

Recordset actions are almost the same as a Record action. They are implemented the same way and have
the same options in regard to settings and customization.

The only difference is that they can process an entire collection of selected records from the entries viewer,
so they are available from a dropdown box when records are selected in the entries viewer:

description Email
il asdasdasd sdsdd
{uT 0o asdasdasd asdasd
iT asdasdasd asdasd

Showing 1 to 3 of 3 entries

Croce. [7]

Choose..

lApprove
Tcns Created Ip PagelD Url description Email pame

14

A sample for deleting the collection of selected records in the entries viewer:

public override Enums.RecordActionStatus Execute(List<Record> records, Form form)
{
RecordService s = new RecordService(form);
foreach (Record r in records)
{
s.Record = r;
s.Delete();
}
s.Dispose();
return Enums.RecordActionStatus.Completed;

15

Adding form templates to Contour

Contour 1.1 comes with a complete XML schema to represent a form. This XML can be exported and
imported as .ucf files which contains a full XML representation of the form.

However, these .ucf files can also be placed in the form templates directory to make them reusable by end-
users.

Adding an existing form as a template

Export the form you wish to use as a template, this will download a .ucf file to your local machine.
Copy or ftp the file to the fumbraco/plugins/umbracoContour/templates/forms directory
There is nothing that needs to be renamed or modified.

Right click the forms folder in the contour tree and select create, your form should now be available as a
template.

16

Enabling advanced Macro properties

When installing Umbraco Contour, it by default only enables seleting a form, when inserting a macro. The
macro does however a couple of other options to configure if needed.

Available Macro properties

\ Name Description
FormGuid Sets the guid of the form to render, expects a valid GUID
AllowEditing Enables the macro to open previously saved records and edit them, by
default set to FALSE, expects a boolean value
SubmitButtonText Override the text on the submit button, expects a string
NextButtonText Override the text on the Next button, expects a string
PreviousButtonText Override the text on the Previous button. expects a string

If the button texts are not set, Contour will use either #submit, #next, #prev to set the value. these will use
dictionary items if available or fall-back to an english translation.

To enable these additional parameters, go to the developer section in Umbraco, expand the "macros"
folder, and select the "insert macro from umbraco contour"

On the macro edit screen, click "Browse properties" you will then be presented with this screen which add
the selected the properties when you click "save properties"

Browse Properties x

Choose Properties from RenderForm

FormGuid
AllowEditing

Hage

Abias SubmitButtonText
MextButtonText
PreviousButtonText

Save Properties

L b HBLY e i £
e

G HETY e £

17

Reference

List of classes, interfaces, Ul controls available in the current version

Umbraco Contour Library methods
Umbraco Contour includes a libary for easy access to record data in the xml format. The library is located in
the class Unbraco.Forms.Library®

GetApprovedRecordsFromPage
XPathNodeIterator GetApprovedRecordsFromPage(int pageld)

Returns All records with the state set to approved from all forms on the umbraco page with the id = pageld
as a XPathNodeIterator

GetApprovedRecordsFromFormOnPage

XPathNodeIterator GetApprovedRecordsFromFormOnPage(int pageld, string formId)
Returns All records with the state set to approved from the form with the id = formld on the umbraco page
with the id = pageld as a XPathNodeIterator

GetRecordsFromPage
XPathNodeIterator GetRecordsFromPage(int pageld)

Returns All records from all forms on the umbraco page with the id = pageld as a XPathNodeIterator

GetRecordsFromFormOnPage
XPathNodeIterator GetRecordsFromFormOnPage(int pageld, string formId)

Returns All records from the form with the id = formld on the umbraco page with the id = pageld as a
XPathNodeIterator

GetRecordsFromForm
XPathNodeIterator GetRecordsFromForm(string formId)

Returns All records from the form with the ID = formld as a XPathNodeIterator

GetRecord
XPathNodeIterator GetRecord(string recordId)

Returns the specific record with the ID = recordld as a XPathNodeIterator

1 . . .
Umbraco.Forms is the internal class naming for Umbraco Contour

18

Bracket syntax for workflow settings

When adding settings to a workflow, it can be handy to map record values to the setting fields. This can be
done using the build-in bracket syntax, and also by using the standard umbraco syntax for adding page,
session and cookie values.

Record values syntax
Individual fields can be referenced by their caption in lowercase and with whitespace and special characters

removed:
\ Sample field caption Bracket syntax
Email {email}
Enter your employment ID {enteryouremploymentid}
First & last name {firstlastname}
Your #1 job {yourljob}

it is also possible to reference core record attributes like current member id, when the record was created,
page id, etc. These are all prefixed with "record."

\ Record attribute name Bracket syntax
Creation Date {record.created}
Update Date {record.updated}
Member Id {record.memberkey}
Page Id {record.umbracopageid}
Client IP {record.ip}

—— Send email when Submitted
Active
Type Send email |Z|

Description Send the result of the form to an email addresse

Email .

Enter the receiver | LEmail}

email

Subject

Enter the subject | Message send

Enter the intro the IP: frecord.ip} has send message on
eS=age {record.created} and the member with the id

frecord.memberkey} was logeged in...

? Notice the record attributes was added to version 1.0.5 of Umbraco Contour so was not available in 1.0 or any of the
beta releases

Page, Session and cookie values syntax
To insert values from the current http context like request collection data, cookie values or values from the

current umbraco page, we can use the standard umbraco bracket syntax. This is detailed on the umbraco
wiki

Type of value Bracket syntax Example

Insert page value [#propertyAlias] [#bodyText]

Insert recursive page value [SpropertyAlias] [SmetaDescription]
Insert cookie value [%cookieValue] [%sessionKey]
Insert value from request collection [@requestKey] [@formField]

20

The provider model

Inheritable classes for the provider model
Classes the provider model automatically registers.

Type Description Class

DataSource Type Adds a new datasource type Umbraco.Forms.Core.DataSourceType
Export Type Adds a new export type Umbraco.Forms.Core.ExportType
Workflow Type Adds a new workflow type Umbraco.Forms.Core.WorkflowType

Field Type Adds a new field type Umbraco.Forms.Core.FieldType

Prevalue Source Type Adds a new prevalue source type Umbraco.Forms.Core.PrevalueSourceType
Record Action Type Adds a new Record Action* Umbraco.Forms.Core.RecordActionType
RecordSet Action Type Adds a new RecordSet Action* Umbraco.Forms.Core.RecordsetActionType

The classes are used to register new types in Umbraco Contour. To use, simply inherit the class and set
some meta information.

namespace ClassLibraryl

{
public class Classl : Umbraco.Forms.Core.WorkflowType
{
public Classi() {
this.Name = "My new workflow type";
this.Id = new Guid("D6A2C406-CF89-11DE-B@75-55B055D89593");
this.Description = "This is a sample";
}
}
}

21

A complete fieldtype class
The below class shows a complete field type implemention using the FieldType class. This is the
sourcecode of the Fieldtype "Textfield" included in Umbraco Contour.

public class Textfield : FieldType

{
public System.Web.UI.WebControls.TextBox tb;

public List<Object> _value;

public Textfield() {
//Provider
this.Id = new Guid("3F92EQ1B-29E2-4a30-BF33-9DF5580ED52D");
this.Name = "Textfield";
this.Description = "Renders a html input fieldKey";

this.Icon = "textfield.png";
this.DataType = FieldDataType.String;

tb = new TextBox();
_value = new List<object>();

}
public override WebControl Editor {
get{
tb.TextMode = System.Web.UI.WebControls.TextBoxMode.SinglelLine;
tb.CssClass = "text";
if (_value.Count > 0)
tb.Text = _value[@].ToString();
return tb; }
set{
base.Editor = value;
}
}

public override List<Object> Values{
get{
if (tb.Text != "") {
_value.Clear();
_value.Add(tb.Text);
}

return _value;

}
set{

_value = value;
}
}

public override string RenderPreview(){
return "<input type=\"text\" class=\"textfield\" />";
}

public override string RenderPreviewWithPrevalues(List<object> prevalues){
return RenderPreview();

}

public override bool SupportsRegex {
get{return true;}
}

22

A complete workflow type class
Shows a complete workflow type implementation using the WorkflowType class. This is the actual source
code of the "perform filtering" workflow included in Umbraco Contour.

public class ChangeRecordState : WorkflowType
{
[Attributes.Setting("Dirty Words",
description = "Comma seperated list of forbidden words",
control = "Umbraco.Forms.Core.FieldSetting.TextField")]
public string DirtyWords { get; set; }

[Attributes.Setting("Action", prevalues = "Delete Record,Approve Record",
description = "What to do if it matches",
control = "Umbraco.Forms.Core.FieldSetting.Dropdownlist")]

public string Action { get; set; }

public ChangeRecordState() {
this.Id = new Guid("4C40A092-0CB5-481d-96A7-A02DSE7CDB2H");
this.Name = "Perform filtering";
this.Description = "Changes the state of the record being processed";

}

public override List<Exception> ValidateSettings() {
return new List<Exception>();
}

public override WorkflowExecutionStatus Execute(Record record, RecordEventArgs e) {
string content = "";
string[] words = DirtyWords.Split(',"');

bool dirty = false;

foreach (RecordField rf in record.RecordFields.Values){
content += rf.ValuesAsString();
}

foreach(string s in words) {
if (content.Contains(s)) {
dirty = true;
break;

}

if (dirty) {
Services.RecordService rs = new Services.RecordService(record);
if (Action == "Delete Record")
rs.Delete();
else
rs.Approve();
rs.Dispose();

}

return WorkflowExecutionStatus.Completed;

23

Setting Types

Ul components for adding setting controls to workflow,datas ource,prevalue and export types. Notice Field

Types does not currently support setting components. The settings types are used as attributes on a public

string property. This will auto generate the Ul and set the property automatically every time the type is

instantiated.

[Umbraco.Forms.Core.Attributes.Setting("Method",

description = "POST or GET",

prevalues = "POST,GET,PUT,DELETE",
control = "Umbraco.Forms.Core.FieldSetting.Dropdownlist")

public string Method { get; set; }

Parameter Description

Name Label text for the Ul

Description Tooltip information for the Ul

Prevalues Contains a comma-seperated list of prevalues
control Contains the full class name of the control to render

Available field setting types

The below classes are the Ul controls currently available in Umbraco Contour. These can only be used for

setting property values of the Type "string"

\ Description Class
Renders a checkbox Umbraco.Forms.Core.FieldSetting.Checkbox
Renders a Ul component for mapping a recordtoan Umbraco.Forms.Core.FieldSetting.DocumentMapper
umbraco document type
Renders a dropdownlist Umbraco.Forms.Core.FieldSetting.Dropdownlist
Renders a Ul component for mapping a record to Umbraco.Forms.Core.FieldSetting.FieldMapper
named fields
Renders a file upload Umbraco.Forms.Core.FieldSetting.File
Render a password field Umbraco.Forms.Core.FieldSetting.Password
Renders a text area Umbraco.Forms.Core.FieldSetting.TextArea
Renders a input field Umbraco.Forms.Core.FieldSetting.TextField
Renders a umbraco content picker Umbraco.Forms.Core.FieldSetting.Pickers.Content
Renders a content picker with a XPath search field* Umbraco.Forms.Core.FieldSetting.Pickers.ContentWithXPath
Renders an list of umbraco datatypes Umbraco.Forms.Core.FieldSetting.Pickers.DataType
Renders a list of umbraco document types Umbraco.Forms.Core.FieldSetting.Pickers.DocumentType
Renders a list of umbraco media types Umbraco.Forms.Core.FieldSetting.Pickers.MediaType
Renders a list of umbraco member groups Umbraco.Forms.Core.FieldSetting.Pickers.MemberGroup
Renders a list of umbraco member types Umbraco.Forms.Core.FieldSetting.Pickers.MemberType

24

The RecordService

Umbraco.Forms.Core.Services.RecordService handles changing record states, starting workflows and
triggering events on a record. So to trigger any events on a record, it is not enough to change the record’s
state property. Instead the change must be triggered through the RecordService.

The RecordService is instantiated using either a reference to a Form, a Record or both.

//Instantiate using a record reference
Umbraco.Forms.Core.Services.RecordService rs = new
Umbraco.Forms.Core.Services.RecordService(record);

//perform state changes
rs.Approve();

//Dispose of the service object
rs.Dispose();

Record-State changing methods

\ State Description \
RecordService.Open() Triggers the open event, and workflows that reacts on “Opened”
RecordService.Resume() Triggers the resume event, and workflows that reacts on “Resumed”
RecordService.NextPage() Triggers the open event, and workflows that reacts on “Partially Submitted”
RecordService.PreviousPage() Does not trigger any events or workflows
RecordService.Submit() Triggers the submit event, and workflows that reacts on “Submitted”
RecordService.Approve() Triggers the approve event, and workflows that reacts on “Approved”
RecordService.Delete() Triggers the delete event, and workflows that reacts on “Deleted”
RecordService.Dispose() Disposes of the record service and releases all resources

Available Record Events
The record service also exposes static traditional .net events which can be subscribed to like normal events.
The events triggered by record changes are below.

\ Event Description \
RecordService.RecordOpened Triggers when a form is displayed the first time
RecordService.RecordPartiallySubmitted Trigges when user goes from one form step to another
RecordService.RecordResumed Triggers when the form is resumed after inactivity
RecordService.RecordSubmitted Triggers when a form is submitted
RecordService.RecordApproved Triggers when the record is approved
RecordService.RecordDeleted Triggers when the record is deleted

Subscribing to record events using umbraco.buinesslogic.ApplicationBase
Umbraco has build in support for connecting to events without any extra work: simply inherit from the
ApplicationBase class.

using Umbraco.Forms.Core;
using Umbraco.Forms.Core.Services;
using umbraco.BusinessLogic;
public class Classl : umbraco.BusinesslLogic.ApplicationBase {
public Class1(){
RecordService.RecordApproved += new EventHandler<RecordEventArgs>(RecordApproved);
}

void RecordApproved(object sender, Umbraco.Forms.Core.RecordEventArgs e) {
Record r = (Record)sender;
Log.Add(LogTypes.Debug, r.UmbracoPageld, "record submitted by " + r.IP);

The RecordStorage and RecordsViewer

The Umbraco.Forms.Data.Storage.RecordStorage provides crudding capabilities on the Record object.

Instantiating the record storage

//either connect to the current storage
RecordStorage rs = new Umbraco.Forms.Data.Storage.RecordStorage();

//or connect to a remote storage using a connection string
ISglHelper sqlhelper = umbraco.Datalayer.DatalayerHelper.CreateSqlHelper(connectionstring);
RecordStorage remoteRs = new Umbraco.Forms.Data.Storage.RecordStorage(sqlhelper);

All storage classes are disposable so remember to call Dispose() after use.

26

Import / Export / Form Templates XML schema

Contour has a unified XML schema to describe a form and its fields. This XML Schema is used for exporting,
importing and storing templates of forms. The schema follows the class structure of the
Umbraco.Forms.Core.Form class:

<?xml version="1.0" encoding="utf-8"?>
<Form>
<Name>sdasda</Name>
<Created>2010-08-02T13:58:07.25</Created>
<FieldIndicationType>NoIndicator</FieldIndicationType>
<Indicator />
<ShowValidationSummary>false</ShowValidationSummary>
<HideFieldValidation>false</HideFieldValidation>
<RequiredErrorMessage>{0} is mandatory</RequiredErrorMessage>
<InvalidErrorMessage>{@} is not valid</InvalidErrorMessage>
<MessageOnSubmit>sdasdasdasd</MessageOnSubmit>
<GoToPageOnSubmit>0</GoToPageOnSubmit>
<ManualApproval>false</ManualApproval>
<Archived>false</Archived>
<StoreRecordsLocally>true</StoreRecordsLocally>
<DisableDefaultStylesheet>false</DisableDefaultStylesheet>
<Pages>
<Page>
<FieldSets>
<FieldSet>
<Fields>
<Field>
<PreValues />
<Caption>description</Caption>
<ToolTip />
<SortOrder>2</SortOrder>
<PageIndex>0</PageIndex>
<FieldsetIndex>@</FieldsetIndex>
<I1d>00000000-0000-0000-0000-000000000000</1d>
<FieldSet>e@075574b-47fd-453a-9b54-2fd7025e3b95</FieldSet>
<Form>19891658-5d4a-4f29-8606-6a8ad89cc58a</Form>
<FieldTypeId>3f92e01b-29e2-4a30-bf33-9df5580ed52c</FieldTypeld>
<Mandatory>false</Mandatory>
<RegEx />
<RequiredErrorMessage />
<InvalidErrorMessage />
<PreValueSourceId></PreValueSourceId>
<Settings />
</Field>
</Fields>
<Caption>sdasda</Caption>
<SortOrder>0</SortOrder>
<I1d>00000000-0000-0000-0000-000000000000</Id>
<Page>8ea44696-608e-45c9-b59d-a4c302d551bc</Page>
</FieldSet>
</FieldSets>
<Caption>sdasda</Caption>
<SortOrder>0</SortOrder>
<I1d>00000000-0000-0000-0000-000000000000</Id>
<Form>19891658-5d4a-4f29-8606-6a8ad89cc58a</Form>
</Page>
</Pages>
<DataSource>00000000-0000-0000-0000-000000000000< /DataSource>
<Id>19891658-5d4a-4129-8606-6a8ad89cc58a</Id>
</Form>

27

28

